
A NOVEL APPROACH FOR IMPLEMENTING OF A LOG-SIGMOID
FUNCTION ON A FPGA DEVICE USING THE SFLOAT24 MATH L IBRARY

– AN MODELLING –

M. C. Miglionico

Department of Architecture and Industrial Design “Luigi Vanvitelli”
San Lorenzo Abbey − Second University of Napoli

Via S. Lorenzo, Monastero di San Lorenzo, I-81031 Aversa (CE) – ITALY
E-mail: mcristina.miglionico@unina2.it

F. Parillo*

Department of Electrical Engineering and Information “M. Scarano”
University of Cassino, Via G. Di Biasio 43, I-03043 Cassino (FR) - ITALY

E-mail: f.parillo@unicas.it

ABSTRACT

Artificial Neural Networks (ANNs) base their processing capabilities in parallel architectures. This makes
them useful to solve pattern recognition, system identification and control problems. This work focuses
the configuration of a Field Programmable Gate Array (FPGA) to realize an Activation Function (AF)
utilized in ANNS. The most popular AF is the Log-Sigmoid function, which has different possibilities of
realizing in digital hardware. In particular a two parallel processes approach, in order to optimize
hardware resources of the used FPGA device, is presented here. The first process consists in a fixed-point
computation of 2n that requires minimal hardware resources. The second process executes a second order
symmetric polynomial function extended to adder output of an Artificial Neuron (AN). The log-sigmoid
function has been obtained multiplying the functions obtained by two parallel processes. The second
process has been implemented by means the custom developed sfloat24 math library.
This function is one the most used activation function in the ANNS because its differentiable nature that
makes it compatible with any classical back propagation algorithm.
The simulation results show that the proposed approach of implementing the log-sigmoid activation
function is feasible, and it outperforms by high-speed response.

Keywords: Artificial Neuron (AN), Field Programmable Gate Array (FPGA), Log-Sigmoid function,
sfloat24 math library.

1. Introduction
Artificial Neural Networks (ANNS) are the computational models of human brain. ANNS applications
range from function approximation to pattern classification and recognition. The ANNs are used in all the
circumstances or/and cases study, where is very hard or impossible to solve the formulated problem using
a closed analytical formulation. Hardware implementation of ANNS to utilize the parallelism can follow
analog, digital or mixed signal design technique. Matured and flexible digital design in Very Large Scale
Integration (VLSI) can be implemented on Application Specific Integrated Circuits (ASICS) or Field
Programmable Gate Arrays (FPGAS).

* Corresponding author

Proceedings of the International Symposium on the Analytic Hierarchy Process 2013

 2

ASIC design has some drawbacks like the ability to run only specific algorithm and limitations on the size
of a network, instead, FPGAS offers a suitable alternative that has flexibility with an appreciable
performance. It maintains high processing density, which is needed to utilize the parallel computation in
an ANN.
Every digital module is concurrently instantiated on the FPGA and hence, operates in parallel. (Saichand,
V.; Nirmala, D.M.; Arumugam, S.; Mohankumar, N., 2008).
As well known, in the literature are shown several approximation methods used to implement a log-
sigmoid function. These methods are based on piecewise linear approximation (PWL), lookup table
(LUT), and hybrid methods. Generally, the LUT implementations are the fastest, but they consume a
large area of silicon. The PWL approximation method approximates the function with a limited number of
linear segments, with linear approximations the accuracy of AF depends by the number of the used linear
segments. In this case the resolution of AF is proportional to the number of the used segments. (Namin,
A.H.; Leboeuf, K.; Muscedere, R.; Huapeng Wu; Ahmadi, M., 2009).
Neurons activation functions are one of the major challenges in hardware implementation of ANNS.
Both digital and analog modules can be used to realize the activation function in hardware
implementations depending on the type of the ANN. ANNS can be generally categorized into three
groups: digital, analog, and hybrid (mixed-signal) neural networks. In digital neural networks, both
synaptic weight storage cells and activation function are realized by digital gates such as lookup tables
(LUTS) which are generally used to approximate the activation function. In analog neural networks, on
the other hand, analog circuits are used both to estimate the activation function and to store the synaptic
weights.
The third group of ANNS are Hybrid Neural Networks (HNNS) which are a combination of digital and
analog gates. In HNNS, analog circuits are employed to realize the activation function while weights are
stored digitally (Khodabandehloo, G.; Mirhassani, M.; Ahmadi, M., 2012). It is obviously that the
nonlinear activation function implementation with higher accuracy improves the learning and
generalization capabilities of neural networks.
In this paper the authors present the design of an AN on an ALTERA® Cyclone III EP3C25F324C8
FPGA evaluation board.
The input stage of implemented neuron (Figure 1) is based on a sfloat24 adder. For implementing the
sigmoid activation function is used a novel analytical approximation of the same. This approach is based
in using a 2n, with n an integer number, function in conjunction with a second order symmetrical
polynomial interpolation in order to approximate, with a minimum error, the following function:

1
()

(1)x
f x

e−=
+

 (1)

Figure 1. Block diagram of an artificial neuron.

w0=b

w1

w2

wn

X0=-1

x1(t)

x2(t)

xn(t)

.

.

.

y(t) ∑

a f

Adder output

M.C. Miglionico, F. Parillo — AN MODELLING —

 3

y(t) is the output of the neuron. W is the input vector, xi(t), [0;]i n∈ are the inputs. A generic AN can be
generalized as the following:

0

() () ()
n

i i
i

y f a f w x f W X
=

= = ⋅ = ⊗∑ (2)

with

0

1

2

.

.

n

x

x

x
X

x

=

 and

0

1

2

.

.

n

w

w

w
W

w

=

where: x0 is equal to -1 and w0=b, where b is a bias and/or a threshold.

2. Sigmoid Function Modelling
A sigmoid function can be approximate also using a 5th order Taylor series (Bezborah, A., 2012),
CORDIC theory (M.C. Miglionico, F. Parillo, 2011a) or using a very simplified math expression as the
following:

0.5 (0.5)
1ss

a
f

a
= + ⋅

+
 (3)

The advantage of using the expression (3) that it is very simple (M.C. Miglionico, F. Parillo, 2011b) to be
implemented, but the absolute difference between the expressions (1) and (3) is about equal to ± 0.1.
Using the expression (3) is possible to implement ANNS capable to solve simple decisional cases, where
the usage of (3) in place of the (1) is not a critical factor.
To approximate the expression (1) with a minimum error, in this work, has been used the expression:

() 0.5 1
2s x

s
f x s ⋅

 = ⋅ + −

 (4)

where s is equal to -1 for x<=0 else s=1.
It is well know that the exponential function implementation, in floating point number format, is a hard
task if a FPGA device is used. On this devices family is only possible to implement the power of 2 using
integer numbers, the VHDL syntax to perform this operation is:

Power_of_2:=2** i
with i any integer number.
The floating point exponential on a FPGA device with reference to the expression (4) is implemented by
writing a VHDL algorithm based on execution of two parallel processes.
In the first process is considered the expression:

(,) 2s k
iy k s ⋅= (5)

where k is the integer part of x and s is the already mentioned sign function and it is depicted in the
Figure 2.

Proceedings of the International Symposium on the Analytic Hierarchy Process 2013

 4

Figure 2. Graph of Sign function.

This first part is easily synthesizable on any FPGA device, using only integer numbers the (4) could be
written as:

() 0.5 1
(,)i

s
f x s

y k s

= ⋅ + −

 (6)

f(x) assumes only discrete values as shown in the Figure 3.

Figure 3. (a) Approximation of the Sigmoid activation function obtained by considering the expressions (5) and (6)

and (b) the error with a pure floating point Sigmoid.

Obviously approximating the sigmoid function only by using the (5) as it is possible to see the Figure 3,
the ANN does not work in correct manner because the great quantization error of the activation function,
in particular, in the interval [-5,+5] of the adder output.
In the second process is considered the following polynomial expression:

2(,)py x s a x s b x c= ⋅ + ⋅ ⋅ + (7)

with 0.35a = 0.65b s= ⋅ and 1.0c = ;
The expression (7) is very simple to implement, because it is based only on the usage of adders and
multipliers operators. This approach is more efficient and less complex, at same time, it gives a higher
accuracy than the PWL method mentioned in section 1.
The (7) can be implemented on any capable FPGA device using the developed sfloat24 math library (W.
Kahan, 1996) (F. Parillo, 2012a) (F. Parillo, 2012b).

It’s a periodic function, with first kind discontinuities, in the interval [];0−∞ and []0;+∞ respectively

and symmetrical respect the origin, as shown in Figure 4.

(a) (b)

()s x

x

+1

-1

0.0

0.2

0.4

0.6

0.8

1.0

-10.0 -5.0 0.0 5.0 10.0

adder output

f(
k)

, f
(x

)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-10.0 -5.0 0.0 5.0 10.0

adder output

e
rr

o
r

M.C. Miglionico, F. Parillo — AN MODELLING —

 5

Figure 4. Graph of the expression (7) in function of the adder output.

A last the sfloat24 approximation of Log-Sigmoid function can be obtained as:

() 0.5 1
()

s
f x s

y x

= ⋅ + −

 (8)

with: () (,) (,) 2s x
i py x y k s y x s ⋅= ⋅ = .

3. FPGA Implementation – Simulation results –
It is possible, on the basis of expressions (5) and (7), to build the sigmoid function. The code of the above
mentioned expression has been written using the VHDL syntax.
The code has been implemented using the ALTERA® Quartus II 9.1 development tool. The sfloat24 log-
sigmoid activation function occupies only 13% of total logic elements of the used Cyclone® III
EP3C25F324C8 device and occupying less than 1% of the dedicated logic registers.
The VHDL code has been written by considering two parallel processes running concurrently on the basis
of the analytical approach described in the section 2 as shown in the Figure 5.

Figure 5. Operating principle of the proposed algorithm.

In the following is shown the obtained Sigmoid function compared to the same function built with
Simulink® blocks. It is important to underline that the Matlab® operates with double precision floating (64
bit) point numbers.
The simulation results when the sampling time Ts has been fixed to a 2.5 µS, show that the output error
varies in the range ±0.0025 about (Figure 6). Other simulations have been performed with different
sampling times. In all the tests results that the entire system has a latency time at maximum of 6 clock
cycles. Improvement of the overall performances could be reached by using a sample time less than 2.5
µS. For a common industrial/decisional application the used sample time produces already good results.

0.0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1.0

-10.0 -5.0 0.0 5.0 10.0
adder output

yp
(x

,s
)

() 0.5 1
()

s
f x s

y x

= ⋅ + −

 *

- Process 1 -

Computation of the function (,)iy k s

using standard VHDL operators

- Process 2 -
Computation of the function (,)py x s

using sfloat24 math library

() (,) (,)i py x y k s y x s= ⋅

Proceedings of the International Symposium on the Analytic Hierarchy Process 2013

 6

Figure 6. Simulation results – (a) Sigmoid activation function and (b) the absolute error between Sigmoid

generated by the sfloat24 math library and one generated by Simulink® math function block.

The system presents a stable performance comparing to the any external disturbance. In fact, FPGAS offer
the stability of a typical digital implementation on a standard microprocessor and performances
comparable to an analog implementation. Due to the low device logic elements occupation, on the used
FPGA evaluation board it is possible to implemented a full ANN capable to accommodating a complex
Bank Credit Risk Management system, as depicted in (M.C. Miglionico, F. Parillo, 2012), where as
example of a decision system credit has been considered the situation of a current account holder that
requires a loan at proper credit institute with its risk evaluation has been taken into consideration.
The risk is represented by the variable R. The variable x0 indicates whether the current account holder has
got (value = 1) a real estate property or hasn’t (value = -1). The current account holder has got a mortgage
loan (x1 = 1) or hasn’t (x1 = -1), or (x1 = 0) if he does not own any property. The variable x2 represents the
availability of a profit (value = 1) or not (value = -1) if the profit is non-existent or insignificant (x2 = 0).
The loan applicant has a good behaviour (x3 = 1), middle (x3 = 0) or bad (x3 =-1) with the credit institute.
To solve this problem the ANN was constituted only by 3 neurons in the hidden layer and 1 neuron in the
output layer, the maximum error, difference between desired output and the actual ones, reached is 0.1%.
To examine more complex situations it is necessary to implement ANNS with a major number of neurons.
With the used low cost FPGA device this operation is not possible, because it is not capable to
accommodate other neurons.

4. Conclusions
The obtained results show the validity and the feasibility of implementing a Sigmoid AF using both the
custom sfloat24 math library and the proposed analytical approach. On the used FPGA device is possible
to implement also a full ANN capable to solve a Bank Credit Risk Management problem or other
complex decisional problem. Furthermore, the speed or execution or latency of the ANN can be precisely
controlled with the amount of reuse of sfloat24 arithmetic elements. The proposed analytical approach to
implement a Sigmoid function, with few considerations gives the possibility to add also new math

operators in the sfloat24 math library, for example, xe− and xe functions.
Using a more complex FPGA device it is possible to implement a network with an interesting number of
neurons working in parallel using only a single chip.
The implemented sigmoid module is highly accurate and can easily be reconfigured for any sigmoid slope
and any desired error tolerance.

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

-10.0 -5.0 0.0 5.0 10.0

adder output

f(
x)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

-10.0 -5.0 0.0 5.0 10.0

adder output

e
rr

o
r

M.C. Miglionico, F. Parillo — AN MODELLING —

 7

REFERENCES

Saichand, V.; Nirmala, D.M.; Arumugam, S.; Mohankumar, N. (2008). FPGA Realization of Activation
Function for Artificial Neural Networks. Eighth International Conference on Intelligent Systems Design
and Applications, ISDA 2008, Vol. 3, pp. 159 - 164.

Namin, A.H.; Leboeuf, K.; Muscedere, R.; Huapeng Wu; Ahmadi, M. (2009). Efficient hardware
implementation of the hyperbolic tangent sigmoid function, IEEE International Symposium on Circuits
and Systems, ISCAS 2009, pp. 2117-2120.

Khodabandehloo, G.; Mirhassani, M.; Ahmadi, M. (2012) Analog Implementation of a Novel Resistive-
Type Sigmoidal Neuron, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume
20, Issue 4, pp. 750-754.

Bezborah, A. (2012). A Hardware Architecture for Training of Artificial Neural Networks Using Particle
Swarm Optimization, Third International Conference on Intelligent Systems, Modelling and Simulation
(ISMS), pp. 67-70.

M.C. Miglionico, F. Parillo, (2011a). Modelling a neuron using a custom math library sfloat24 –
Implementation of a sigmoid function on a FPGA device –, ISHAP Conference Sorrento Italy: 15 – 18
June 2011, http://204.202.238.22/isahp2011/dati/autor.html, Online Proceedings ISSN 1556-8296,
Proceedings of the International Symposium on the Analytic Hierarchy Process for Multicriteria Decision
Making, Publication date: 15 June 2011.

M.C. Miglionico, F. Parillo. (2011b). A BP Neural Network Application in Bank Credit Risk
Management System using a sfloat24 custom math library – FPGA implementation –, A.M.A.S.E.S.
Meeting, XXXV Edition, September 15-17 2011, Pisa, ITALY.

W. Kahan. (1996). Lecture notes on the Status of IEEE Standard 754 for Binary Floating Point
Arithmetic. Electrical Engineering and Computer Science – University of California Berkeley CA
94720-1776, 31 May 1996.

F. Parillo. (2012a). sfloat24 Converter Tool version 1.1, Software developed under NI® LabView,
publication date: 05 June 2012, link: https://decibel.ni.com/content/docs/DOC-22721

F. Parillo. (2012b). Dual Boost High Performances Power Factor Correction (PFC) control strategy
implemented on a low cost FPGA device, using a custom sfloat24 developed math library, IEEE
International 47th Universities Power Engineering Conference (UPEC 2012), Brunel University of
London, 04 - 07 September 2012, Digital Object Identifier: 10.1109/UPEC.2012.6398654, Publication
Year: 2012 , pp. 1 - 6

M.C. Miglionico, F. Parillo. (2012). An Application in Bank Credit Risk Management System employing
A BP Neural Network based on sfloat24 custom math library using a low cost FPGA device, Advances in
Computational Intelligence Communications in Computer and Information Science, Springer magazine,
Vol. 300, pp. 84-93, link: http://rd.springer.com/chapter/10.1007/978-3-642-31724-8_10.

