
A NOVEL APPROACH FOR IMPLEMENTING OF A LOG-SIGMOID 
FUNCTION ON A FPGA DEVICE USING THE SFLOAT24 MATH L IBRARY            

– AN MODELLING – 
 

M. C. Miglionico 

Department of Architecture and Industrial Design “Luigi Vanvitelli”  
San Lorenzo Abbey − Second University of Napoli 

Via S. Lorenzo, Monastero di San Lorenzo,  I-81031 Aversa (CE) – ITALY 
E-mail:  mcristina.miglionico@unina2.it 

 
F. Parillo* 

Department of Electrical Engineering and Information “M. Scarano” 
University of Cassino, Via G. Di Biasio 43, I-03043 Cassino (FR) - ITALY 

E-mail: f.parillo@unicas.it 
 
 

ABSTRACT 
 

Artificial Neural Networks (ANNs) base their processing capabilities in parallel architectures. This makes 
them useful to solve pattern recognition, system identification and control problems. This work focuses 
the configuration of a Field Programmable Gate Array (FPGA) to realize an Activation Function (AF) 
utilized in ANNS. The most popular AF is the Log-Sigmoid function, which has different possibilities of 
realizing in digital hardware. In particular a two parallel processes approach, in order to optimize 
hardware resources of the used FPGA device, is presented here. The first process consists in a fixed-point 
computation of 2n that requires minimal hardware resources. The second process executes a second order 
symmetric polynomial function extended to adder output of an Artificial Neuron (AN). The log-sigmoid 
function has been obtained multiplying the functions obtained by two parallel processes. The second 
process has been implemented by means the custom developed sfloat24 math library. 
This function is one the most used activation function in the ANNS because its differentiable nature that 
makes it compatible with any classical back propagation algorithm.  
The simulation results show that the proposed approach of implementing the log-sigmoid activation 
function is feasible, and it outperforms by high-speed response. 
 
Keywords: Artificial Neuron (AN), Field Programmable Gate Array (FPGA), Log-Sigmoid function, 
sfloat24 math library. 
 
 

1.  Introduction 
Artificial Neural Networks (ANNS) are the computational models of human brain. ANNS applications 
range from function approximation to pattern classification and recognition. The ANNs are used in all the 
circumstances or/and cases study, where is very hard or impossible to solve the formulated problem using 
a closed analytical formulation.  Hardware implementation of ANNS to utilize the parallelism can follow 
analog, digital or mixed signal design technique. Matured and flexible digital design in Very Large Scale 
Integration (VLSI) can be implemented on Application Specific Integrated Circuits (ASICS) or Field 
Programmable Gate Arrays (FPGAS). 
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ASIC design has some drawbacks like the ability to run only specific algorithm and limitations on the size 
of a network, instead, FPGAS offers a suitable alternative that has flexibility with an appreciable 
performance. It maintains high processing density, which is needed to utilize the parallel computation in 
an ANN.  
Every digital module is concurrently instantiated on the FPGA and hence, operates in parallel. (Saichand, 
V.; Nirmala, D.M.; Arumugam, S.; Mohankumar, N., 2008). 
As well known, in the literature are shown several approximation methods used to implement a log-
sigmoid function. These methods are based on piecewise linear approximation (PWL), lookup table 
(LUT), and hybrid methods. Generally, the LUT implementations are the fastest, but they consume a 
large area of silicon. The PWL approximation method approximates the function with a limited number of 
linear segments, with linear approximations the accuracy of AF depends by the number of the used linear 
segments. In this case the resolution of AF is proportional to the number of the used segments.  (Namin, 
A.H.; Leboeuf, K.; Muscedere, R.; Huapeng Wu; Ahmadi, M., 2009). 
Neurons activation functions are one of the major challenges in hardware implementation of ANNS. 
Both digital and analog modules can be used to realize the activation function in hardware 
implementations depending on the type of the ANN. ANNS can be generally categorized into three 
groups: digital, analog, and hybrid (mixed-signal) neural networks. In digital neural networks, both 
synaptic weight storage cells and activation function are realized by digital gates such as lookup tables 
(LUTS) which are generally used to approximate the activation function. In analog neural networks, on 
the other hand, analog circuits are used both to estimate the activation function and to store the synaptic 
weights.  
The third group of ANNS are Hybrid Neural Networks (HNNS) which are a combination of digital and 
analog gates. In HNNS, analog circuits are employed to realize the activation function while weights are 
stored digitally (Khodabandehloo, G.; Mirhassani, M.; Ahmadi, M., 2012). It is obviously that the 
nonlinear activation function implementation with higher accuracy improves the learning and 
generalization capabilities of neural networks. 
In this paper the authors present the design of an AN on an ALTERA® Cyclone III EP3C25F324C8 
FPGA evaluation board.  
The input stage of implemented neuron (Figure 1) is based on a sfloat24 adder. For implementing the 
sigmoid activation function is used a novel analytical approximation of the same. This approach is based 
in using a 2n, with n an integer number, function in conjunction with a second order symmetrical 
polynomial interpolation in order to approximate, with a minimum error,  the following function: 
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Figure 1. Block diagram of an artificial neuron. 
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y(t) is the output of the neuron. W is the input vector, xi(t), [0; ]i n∈  are the inputs. A generic AN can be 
generalized as the following: 
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where: x0 is equal to -1 and w0=b, where b is a bias and/or a threshold. 
 
 
2.  Sigmoid Function Modelling  
A sigmoid function can be approximate also using a 5th order Taylor series (Bezborah, A., 2012), 
CORDIC theory (M.C. Miglionico, F. Parillo, 2011a) or using a very simplified math expression as the 
following: 
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The advantage of using the expression (3) that it is very simple (M.C. Miglionico, F. Parillo, 2011b) to be 
implemented, but the absolute difference between the expressions (1) and (3) is about equal to ± 0.1. 
Using the expression (3) is possible to implement ANNS capable to solve simple decisional cases, where 
the usage of (3) in place of the (1) is not a critical factor.   
To approximate the expression (1) with a minimum error, in this work, has been used the expression: 
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where s is equal to -1 for x<=0 else s=1. 
It is well know that the exponential function implementation, in floating point number format, is a hard 
task if a FPGA device is used. On this devices family is only possible to implement the power of 2 using 
integer numbers, the VHDL syntax to perform this operation is: 
 

Power_of_2:=2** i 
with i any integer number. 
The floating point exponential on a FPGA device with reference to the expression (4) is implemented by 
writing a VHDL algorithm based on execution of two parallel processes. 
In the first process is considered the expression: 
 

( , ) 2s k
iy k s ⋅=     (5) 

 
where k is the integer part of x and s is the already mentioned sign function and it is depicted in the  
Figure 2. 
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Figure 2. Graph of Sign function. 
 

This first part is easily synthesizable on any FPGA device, using only integer numbers the (4) could be 
written as: 
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f(x) assumes only discrete values as shown in the Figure 3. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. (a) Approximation of the Sigmoid activation function obtained by considering the expressions (5) and (6)  

and (b) the error with a pure floating point Sigmoid. 
 
Obviously approximating the sigmoid function only by using the (5) as it is possible to see the Figure 3, 
the ANN does not work in correct manner because the great quantization error of the activation function, 
in particular, in the interval [-5,+5] of the adder output. 
In the second process is considered the following polynomial expression: 
 

2( , )py x s a x s b x c= ⋅ + ⋅ ⋅ +    (7) 

 
with 0.35a =  0.65b s= ⋅  and 1.0c = ; 
The expression (7) is very simple to implement, because it is based only on the usage of adders and 
multipliers operators. This approach is more efficient and less complex, at same time, it gives a higher 
accuracy than the PWL method mentioned in section 1. 
The (7) can be implemented on any capable FPGA device using the developed sfloat24 math library (W. 
Kahan, 1996) (F. Parillo, 2012a) (F. Parillo, 2012b). 

It’s a periodic function, with first kind discontinuities, in the interval [ ];0−∞  and [ ]0;+∞  respectively 

and symmetrical respect the origin, as shown in Figure 4. 
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Figure 4. Graph of the expression (7) in function of the adder output. 
 
A last the sfloat24 approximation of Log-Sigmoid function can be obtained as: 
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with: ( ) ( , ) ( , ) 2s x
i py x y k s y x s ⋅= ⋅ = . 

 
 

3.  FPGA Implementation – Simulation results – 
It is possible, on the basis of expressions (5) and (7), to build the sigmoid function. The code of the above 
mentioned expression has been written using the VHDL syntax. 
The code has been implemented using the ALTERA® Quartus II 9.1 development tool. The sfloat24 log-
sigmoid activation function occupies only 13% of total logic elements of the used Cyclone® III 
EP3C25F324C8 device and occupying less than 1% of the dedicated logic registers. 
The VHDL code has been written by considering two parallel processes running concurrently on the basis 
of the analytical approach described in the section 2 as shown in the Figure 5. 
    
 
 
 
 
 
 
 
 
 

Figure 5. Operating principle of the proposed algorithm. 
 
In the following is shown the obtained Sigmoid function compared to the same function built with 
Simulink® blocks. It is important to underline that the Matlab® operates with double precision floating (64 
bit) point numbers.  
The simulation results when the sampling time Ts has been fixed to a 2.5 µS, show that the output error 
varies in the range ±0.0025 about (Figure 6). Other simulations have been performed with different 
sampling times. In all the tests results that the entire system has a latency time at maximum of 6 clock 
cycles. Improvement of the overall performances could be reached by using a sample time less than 2.5 
µS.  For a common industrial/decisional application the used sample time produces already good results. 
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- Process 1 - 

Computation of the function ( , )iy k s  

using standard VHDL operators 

- Process 2 - 
Computation of the function ( , )py x s  

using sfloat24 math library 
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Figure 6. Simulation results – (a) Sigmoid activation function and (b) the absolute error between Sigmoid 

generated by the sfloat24 math library and one generated by Simulink® math function block. 
 
The system presents a stable performance comparing to the any external disturbance. In fact, FPGAS offer 
the stability of a typical digital implementation on a standard microprocessor and performances 
comparable to an analog implementation. Due to the low device logic elements occupation, on the used 
FPGA evaluation board it is possible to implemented a full ANN capable to accommodating a complex 
Bank Credit Risk Management system, as depicted in (M.C. Miglionico, F. Parillo, 2012), where as 
example of a decision system credit has been considered the situation of a current account holder that 
requires a loan at proper credit institute with its risk evaluation has been taken into consideration.  
The risk is represented by the variable R. The variable x0 indicates whether the current account holder has 
got (value = 1) a real estate property or hasn’t (value = -1). The current account holder has got a mortgage 
loan (x1 = 1) or hasn’t (x1 = -1), or (x1 = 0) if he does not own any property. The variable x2 represents the 
availability of a profit (value = 1) or not (value = -1) if the profit is non-existent or insignificant (x2 = 0). 
The loan applicant has a good behaviour  (x3 = 1), middle (x3 = 0) or bad (x3 =-1) with the credit institute. 
To solve this problem the ANN was constituted only by 3 neurons in the hidden layer and 1 neuron in the 
output layer, the maximum error, difference between desired output and the actual ones, reached is 0.1%. 
To examine more complex situations it is necessary to implement ANNS with a major number of neurons. 
With the used low cost FPGA device this operation is not possible, because it is not capable to 
accommodate other neurons. 
 
 
4.  Conclusions 
The obtained results show the validity and the feasibility of implementing a Sigmoid AF using both the 
custom sfloat24 math library and the proposed analytical approach. On the used FPGA device is possible 
to implement also a full ANN capable to solve a Bank Credit Risk Management problem or other 
complex decisional problem. Furthermore, the speed or execution or latency of the ANN can be precisely 
controlled with the amount of reuse of sfloat24 arithmetic elements. The proposed analytical approach to 
implement a Sigmoid function, with few considerations gives the possibility to add also new math 

operators in the sfloat24 math library, for example, xe−  and xe  functions.       
Using a more complex FPGA device it is possible to implement a network with an interesting number of 
neurons working in parallel using only a single chip. 
The implemented sigmoid module is highly accurate and can easily be reconfigured for any sigmoid slope 
and any desired error tolerance. 
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